极限理论总结06:样本矩与样本中心距

极限理论总结06:样本矩与样本中心距

文章目录

08.样本矩样本矩样本中心距

08.样本矩

首先说明一些记号:

X

1

,

X

2

,

,

X

n

i.i.d.

F

X_{1}, X_{2}, \ldots, X_{n}{ }^{\text {i.i.d. }} F

X1​,X2​,…,Xn​i.i.d. F

总体矩:

α

k

=

E

(

X

1

k

)

,

α

1

=

μ

\alpha_{k}=\mathrm{E}\left(X_{1}^{k}\right), \alpha_{1}=\mu

αk​=E(X1k​),α1​=μ

总体中心矩:

μ

k

=

E

{

(

X

1

μ

)

k

}

,

μ

2

=

σ

2

\mu_{k}=\mathrm{E}\left\{\left(X_{1}-\mu\right)^{k}\right\}, \mu_{2}=\sigma^{2}

μk​=E{(X1​−μ)k},μ2​=σ2

样本矩:

a

k

=

1

n

i

=

1

n

X

i

k

,

a

1

=

X

ˉ

n

a_{k}=\frac{1}{n} \sum_{i=1}^{n} X_{i}^{k}, a_{1}=\bar{X}_{n}

ak​=n1​∑i=1n​Xik​,a1​=Xˉn​

样本中心矩:

m

k

=

1

n

i

=

1

n

(

X

i

X

ˉ

n

)

k

,

m

2

=

S

n

2

m_{k}=\frac{1}{n} \sum_{i=1}^{n}\left(X_{i}-\bar{X}_{n}\right)^{k}, m_{2}=S_{n}^{2}

mk​=n1​∑i=1n​(Xi​−Xˉn​)k,m2​=Sn2​

样本矩

样本矩可看作

n

n

n个

i

.

i

.

d

.

i.i.d.

i.i.d.随机变量的均值。在假设任意阶矩有限的条件下,由大数定律和中心极限定理可以得到如下结论:

定理 8.1:

E

(

a

k

)

=

α

k

,

Var

(

a

k

)

=

α

2

k

α

k

2

n

\mathrm{E}\left(a_{k}\right)=\alpha_{k}, \operatorname{Var}\left(a_{k}\right)=\frac{\alpha_{2 k}-\alpha_{k}^{2}}{n}

E(ak​)=αk​,Var(ak​)=nα2k​−αk2​​

a

k

p

α

k

a_{k} \stackrel{p}{\rightarrow} \alpha_{k}

ak​→pαk​

a

k

w

p

1

α

k

{a_{k} \stackrel{w p 1}{\rightarrow}} \alpha_{k}

ak​→wp1αk​

n

(

a

1

α

1

,

,

a

k

α

k

)

d

N

k

(

0

,

Σ

)

\sqrt{n}\left(a_{1}-\alpha_{1}, \ldots, a_{k}-\alpha_{k}\right)^{\top} \stackrel{d}{\rightarrow} N_{k}(\mathbf{0}, \Sigma)

n

​(a1​−α1​,…,ak​−αk​)⊤→dNk​(0,Σ), 其中

Σ

=

(

σ

j

1

j

2

)

k

×

k

\Sigma=\left(\sigma_{j_{1} j_{2}}\right)_{k \times k}

Σ=(σj1​j2​​)k×k​ ,

σ

j

1

j

2

=

α

j

1

+

j

2

α

j

1

α

j

2

\sigma_{j_{1} j_{2}}=\alpha_{j_{1}+j_{2}}-\alpha_{j_{1}} \alpha_{j_{2}}

σj1​j2​​=αj1​+j2​​−αj1​​αj2​​

样本中心距

而对于样本中心距而言,其求和的每一项并不具有独立性。由此我们先构造另一相关统计量:

b

k

=

1

n

i

=

1

n

(

X

i

μ

)

k

b_{k}=\frac{1}{n} \sum_{i=1}^{n}\left(X_{i}-\mu\right)^{k}

bk​=n1​∑i=1n​(Xi​−μ)k,

b

k

b_k

bk​为

i

.

.

i

.

d

.

i..i.d.

i..i.d.随机向量的均值,可以得到类似定理8.1的结论。以下给出引理8.2:

引理8.2:

E

(

b

k

)

=

μ

k

,

Var

(

b

k

)

=

μ

2

k

μ

k

2

n

\mathrm{E}\left(b_{k}\right)=\mu_{k}, \operatorname{Var}\left(b_{k}\right)=\frac{\mu_{2 k}-\mu_{k}^{2}}{n}

E(bk​)=μk​,Var(bk​)=nμ2k​−μk2​​

b

k

p

μ

k

b_{k} \stackrel{p}{\rightarrow} \mu_{k}

bk​→pμk​

b

k

w

p

1

μ

k

\quad b_{k} \stackrel{w p 1}{\rightarrow} \mu_{k}

bk​→wp1μk​

n

(

b

1

μ

1

,

,

b

k

μ

k

)

d

N

k

(

0

,

Σ

~

)

\sqrt{n}\left(b_{1}-\mu_{1}, \ldots, b_{k}-\mu_{k}\right)^{\top} \stackrel{d}{\rightarrow} N_{k}(\mathbf{0}, \tilde{\Sigma})

n

​(b1​−μ1​,…,bk​−μk​)⊤→dNk​(0,Σ~), where

Σ

~

=

(

σ

~

j

1

j

2

)

k

×

k

\tilde{\Sigma}=\left(\tilde{\sigma}_{j_{1} j_{2}}\right)_{k \times k}

Σ~=(σ~j1​j2​​)k×k​ with

σ

~

j

1

j

2

=

μ

j

1

+

j

2

μ

j

1

μ

j

2

\tilde{\sigma}_{j_{1} j_{2}}=\mu_{j_{1}+j_{2}}-\mu_{j_{1}} \mu_{j_{2}}

σ~j1​j2​​=μj1​+j2​​−μj1​​μj2​​

考虑到

b

k

b_k

bk​具有较好的性质,我们尝试将

b

k

b_k

bk​与

m

k

m_k

mk​建立联系

m

k

=

1

n

i

=

1

n

(

X

i

X

ˉ

n

)

k

=

1

n

i

=

1

n

j

=

0

k

C

k

j

(

X

i

μ

)

j

(

μ

X

ˉ

n

)

k

j

,

m_{k}=\frac{1}{n} \sum_{i=1}^{n}\left(X_{i}-\bar{X}_{n}\right)^{k}=\frac{1}{n} \sum_{i=1}^{n} \sum_{j=0}^{k} C_{k}^{j}\left(X_{i}-\mu\right)^{j}\left(\mu-\bar{X}_{n}\right)^{k-j},

mk​=n1​i=1∑n​(Xi​−Xˉn​)k=n1​i=1∑n​j=0∑k​Ckj​(Xi​−μ)j(μ−Xˉn​)k−j, i.e.,

m

k

=

j

=

0

k

C

k

j

(

1

)

k

j

b

j

b

1

k

j

m_{k}=\sum_{j=0}^{k} C_{k}^{j}(-1)^{k-j} b_{j} b_{1}^{k-j}

mk​=j=0∑k​Ckj​(−1)k−jbj​b1k−j​

由此可以得到定理8.3:

定理8.3:

m

k

w

p

1

μ

k

m_{k} \stackrel{w p 1}{\rightarrow} \mu_{k}

mk​→wp1μk​

n

(

m

2

μ

2

,

,

m

k

μ

k

)

d

N

k

1

(

0

,

Σ

)

\sqrt{n}\left(m_{2}-\mu_{2}, \ldots, m_{k}-\mu_{k}\right)^{\top} \stackrel{d}{\rightarrow} N_{k-1}\left(0, \Sigma^{*}\right)

n

​(m2​−μ2​,…,mk​−μk​)⊤→dNk−1​(0,Σ∗), 其中

Σ

=

(

σ

j

12

)

(

k

1

)

×

(

k

1

)

\Sigma^{*}=\left(\sigma_{j_{12}}^{*}\right)(k-1) \times(k-1)

Σ∗=(σj12​∗​)(k−1)×(k−1) ,

σ

j

j

j

=

μ

j

1

+

j

2

+

2

μ

j

1

+

1

μ

j

2

+

1

(

j

1

+

1

)

μ

j

1

μ

j

2

+

2

(

j

2

+

1

)

μ

j

2

μ

j

1

+

2

+

(

j

1

+

1

)

(

j

2

+

1

)

μ

j

1

μ

j

2

μ

2

\sigma_{j j j}^{*}=\mu_{j_{1}+j_{2}+2}-\mu_{j_{1}+1} \mu_{j_{2}+1}-\left(j_{1}+\right.1) \mu_{j_{1}} \mu_{j_{2}+2}-\left(j_{2}+1\right) \mu_{j_{2}} \mu_{j_{1}+2}+\left(j_{1}+1\right)\left(j_{2}+1\right) \mu_{j_{1}} \mu_{j_{2}} \mu_{2}

σjjj∗​=μj1​+j2​+2​−μj1​+1​μj2​+1​−(j1​+1)μj1​​μj2​+2​−(j2​+1)μj2​​μj1​+2​+(j1​+1)(j2​+1)μj1​​μj2​​μ2​

证明:

首先注意到

μ

1

=

0

\mu_1=0

μ1​=0

由CMT可知:

m

k

=

j

=

0

k

C

k

j

(

1

)

k

j

b

j

b

1

k

j

w

p

1

j

=

0

k

C

k

j

(

1

)

k

j

μ

j

μ

1

k

j

=

μ

k

m_{k}=\sum_{j=0}^{k} C_{k}^{j}(-1)^{k-j} b_{j} b_{1}^{k-j}\stackrel{w p 1}{\rightarrow}\sum_{j=0}^{k} C_{k}^{j}(-1)^{k-j} \mu_{j} \mu_{1}^{k-j}=\mu_k

mk​=∑j=0k​Ckj​(−1)k−jbj​b1k−j​→wp1∑j=0k​Ckj​(−1)k−jμj​μ1k−j​=μk​,则(1)成立

m

k

m_k

mk​改写为

m

k

=

j

=

0

k

C

k

j

(

1

)

k

j

b

j

b

1

k

j

=

b

k

k

b

k

1

b

1

+

j

=

0

k

2

C

k

j

(

1

)

k

j

b

j

b

1

k

j

\begin{aligned} m_{k} &=\sum_{j=0}^{k} C_{k}^{j}(-1)^{k-j} b_{j} b_{1}^{k-j} \\ &=b_{k}-k b_{k-1} b_{1}+\sum_{j=0}^{k-2} C_{k}^{j}(-1)^{k-j} b_{j} b_{1}^{k-j} \end{aligned}

mk​​=j=0∑k​Ckj​(−1)k−jbj​b1k−j​=bk​−kbk−1​b1​+j=0∑k−2​Ckj​(−1)k−jbj​b1k−j​​ 有

n

(

m

k

μ

k

)

=

n

(

b

k

μ

k

)

k

b

k

1

n

b

1

+

n

b

1

j

=

0

k

2

C

k

j

(

1

)

k

j

b

j

b

1

k

j

1

=

n

(

b

k

μ

k

)

k

μ

k

1

n

b

1

+

o

p

(

1

)

=

n

(

b

k

μ

k

k

μ

k

1

b

1

)

+

o

p

(

1

)

\begin{aligned} &\sqrt{n}\left(m_{k}-\mu_{k}\right) \\ &\quad=\sqrt{n}\left(b_{k}-\mu_{k}\right)-k b_{k-1} \sqrt{n} b_{1}+\sqrt{n} b_{1} \sum_{j=0}^{k-2} C_{k}^{j}(-1)^{k-j} b_{j} b_{1}^{k-j-1} \\ &\quad=\sqrt{n}\left(b_{k}-\mu_{k}\right)-k \mu_{k-1} \sqrt{n} b_{1}+o_{p}(1) \\ &\quad=\sqrt{n}\left(b_{k}-\mu_{k}-k \mu_{k-1} b_{1}\right)+o_{p}(1) \end{aligned}

​n

​(mk​−μk​)=n

​(bk​−μk​)−kbk−1​n

​b1​+n

​b1​j=0∑k−2​Ckj​(−1)k−jbj​b1k−j−1​=n

​(bk​−μk​)−kμk−1​n

​b1​+op​(1)=n

​(bk​−μk​−kμk−1​b1​)+op​(1)​ 则

n

(

m

2

μ

2

,

,

m

k

μ

k

)

=

n

(

b

2

μ

2

2

μ

1

b

1

,

,

b

k

μ

k

k

μ

k

1

b

1

)

=

n

1

/

2

i

=

1

n

(

Z

i

2

,

,

Z

i

k

)

\begin{aligned} &\sqrt{n}\left(m_{2}-\mu_{2}, \ldots, m_{k}-\mu_{k}\right)^{\top} \\ &\quad=\sqrt{n}\left(b_{2}-\mu_{2}-2 \mu_{1} b_{1}, \ldots, b_{k}-\mu_{k}-k \mu_{k-1} b_{1}\right)^{\top} \\ &\quad=n^{-1 / 2} \sum_{i=1}^{n}\left(Z_{i 2}, \ldots, Z_{i k}\right)^{\top} \end{aligned}

​n

​(m2​−μ2​,…,mk​−μk​)⊤=n

​(b2​−μ2​−2μ1​b1​,…,bk​−μk​−kμk−1​b1​)⊤=n−1/2i=1∑n​(Zi2​,…,Zik​)⊤​ 其中

Z

i

j

=

(

X

i

μ

)

j

μ

j

j

μ

j

1

(

X

i

μ

)

Z_{i j}=\left(X_{i}-\mu\right)^{j}-\mu_{j}-j \mu_{j-1}\left(X_{i}-\mu\right)

Zij​=(Xi​−μ)j−μj​−jμj−1​(Xi​−μ) ,

j

=

2

,

,

k

j=2, \ldots, k

j=2,…,k

计算可得:

E

(

Z

i

j

)

=

0

\mathrm{E}\left(Z_{i j}\right)=0

E(Zij​)=0

Cov

(

Z

i

j

1

,

Z

i

j

2

)

=

μ

j

1

+

j

2

μ

j

1

μ

j

2

j

1

μ

j

1

1

μ

j

2

+

1

j

2

μ

j

2

1

μ

j

1

+

1

+

j

1

j

2

μ

j

1

1

μ

j

2

1

μ

2

\operatorname{Cov}\left(Z_{i j_{1}}, Z_{i j_{2}}\right)=\mu_{j_{1}+j_{2}}-\mu_{j_{1}} \mu_{j_{2}}-j_{1} \mu_{j_{1}-1} \mu_{j_{2}+1}-j_{2} \mu_{j_{2}-1} \mu_{j_{1}+1}+j_{1} j_{2} \mu_{j_{1}-1} \mu_{j_{2}-1} \mu_{2}

Cov(Zij1​​,Zij2​​)=μj1​+j2​​−μj1​​μj2​​−j1​μj1​−1​μj2​+1​−j2​μj2​−1​μj1​+1​+j1​j2​μj1​−1​μj2​−1​μ2​

综上则(2)成立,证毕。

🎀 相关推荐

哪款FM收音机软件好用?探索最佳听音体验
🎯 365邮箱验证

哪款FM收音机软件好用?探索最佳听音体验

📅 07-06 👀 9080
5、天涯明月刀创建不了角色名字
🎯 bt365手机版

5、天涯明月刀创建不了角色名字

📅 07-04 👀 4129
使用OTG将系统安装到优盘上的完整教程(一步步教你如何通过OTG将系统装在U盘上,轻松实现便携系统)